AP Calculus BC

Chapter 7 Test - Review Outline (2013-14)

Section 7.1 - Integrals as Net Change

- Position, velocity and acceleration functions
- Moving right/left or up/down - look at sign of $v(t)$
- Speeding up/slowing down - compare sign of $v(t)$ and $a(t)$
- Displacement from a to $b: \int_{a}^{b} v(t) d t$; Total distance from a to $b: \int_{a}^{b}|v(t)| d t$
- $x\left(t_{2}\right)=x\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} v(t) d t$
- Consumption over time: when you want to find the cumulative effect of a rate of change over time, integrate it (potato problem, amusement park problem)
- Net change from data: approximating the integral with rectangles, trapezoids

Section 7.2 - Areas in a Plane

- Areas between curves - with respect to x and y
- Use geometry or symmetry to save time, when possible

Section 7.3 - Volumes

- Slabs - integrate cross sectional area function $A(x)$ - circles, semicircles, squares, etc.
- Disks:
- $\quad V=\pi \int_{x_{1}}^{x_{2}}[f(x)]^{2} d x$ (around x - axis)
- $V=\pi \int_{y_{1}}^{y_{2}}[f(y)]^{2} d y$ (around y - axis)
- Washers: $\pi \int R^{2}-r^{2}$
- $\quad V=\pi \int_{x_{1}}^{x_{2}}[f(x)]^{2}-[g(x)]^{2} d x$ (around $x-$ axis)
- $\quad V=\pi \int_{y_{1}}^{y_{2}}[f(y)]^{2}-[g(y)]^{2} d y$ (around y-axis)
- Cylindrical shells:
- $V=2 \pi \int r(x) h(x) d x$ (around y - axis)
- $V=2 \pi \int r(y) h(y) d y$ (around x - axis)

Section 7.4 - Arc Length and Surface Area

- Arc length:

$$
\begin{aligned}
& \circ \quad L=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x(\mathrm{w} / \text { respect to } x) \\
& \circ \quad L=\int_{y_{1}}^{y_{2}} \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y(\mathrm{w} / \text { respect to } y)
\end{aligned}
$$

1. Any unfinished problems from Chapter 7 AP Packet
2. p. $413 \# 1,5,13,21,24,27,31,47$

AP Calculus BC

Chapter 7 Test - Review Outline (2013-14)

Section 7.1 - Integrals as Net Change

- Position, velocity and acceleration functions
- Moving right/left or up/down - look at sign of $v(t)$
- Speeding up/slowing down - compare sign of $v(t)$ and $a(t)$
- Displacement from a to $b: \int_{a}^{b} v(t) d t$; Total distance from a to $b: \int_{a}^{b}|v(t)| d t$
- $x\left(t_{2}\right)=x\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} v(t) d t$
- Consumption over time: when you want to find the cumulative effect of a rate of change over time, integrate it (potato problem, amusement park problem)
- Net change from data: approximating the integral with rectangles, trapezoids

Section 7.2 - Areas in a Plane

- Areas between curves - with respect to x and y
- Use geometry or symmetry to save time, when possible

Section 7.3 - Volumes

- Slabs - integrate cross sectional area function $A(x)$ - circles, semicircles, squares, etc.
- Disks:
- $\quad V=\pi \int_{x_{1}}^{x_{2}}[f(x)]^{2} d x$ (around x - axis)
- $V=\pi \int_{y_{1}}^{y_{2}}[f(y)]^{2} d y$ (around y - axis)
- Washers: $\pi \int R^{2}-r^{2}$
- $\quad V=\pi \int_{x_{1}}^{x_{2}}[f(x)]^{2}-[g(x)]^{2} d x$ (around $x-$ axis)
- $\quad V=\pi \int_{y_{1}}^{y_{2}}[f(y)]^{2}-[g(y)]^{2} d y$ (around y-axis)
- Cylindrical shells:
- $V=2 \pi \int r(x) h(x) d x$ (around y - axis)
- $V=2 \pi \int r(y) h(y) d y$ (around x - axis)

Section 7.4 - Arc Length and Surface Area

- Arc length:

$$
\begin{aligned}
& \circ \quad L=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x(\mathrm{w} / \text { respect to } x) \\
& \circ \quad L=\int_{y_{1}}^{y_{2}} \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y(\mathrm{w} / \text { respect to } y)
\end{aligned}
$$

1. Any unfinished problems from Chapter 7 AP Packet
2. p. $413 \# 1,5,13,21,24,27,31,47$

AP ${ }^{\circledR}$ CALCULUS AB 2011 SCORING GUIDELINES

Question 1

For $0 \leq t \leq 6$, a particle is moving along the x-axis. The particle's position, $x(t)$, is not explicitly given. The velocity of the particle is given by $v(t)=2 \sin \left(e^{t / 4}\right)+1$. The acceleration of the particle is given by $a(t)=\frac{1}{2} e^{t / 4} \cos \left(e^{t / 4}\right)$ and $x(0)=2$.
(a) Is the speed of the particle increasing or decreasing at time $t=5.5$? Give a reason for your answer.
(b) Find the average velocity of the particle for the time period $0 \leq t \leq 6$.
(c) Find the total distance traveled by the particle from time $t=0$ to $t=6$.
(d) For $0 \leq t \leq 6$, the particle changes direction exactly once. Find the position of the particle at that time.

AP ${ }^{\oplus}$ CALCULUS AB 2010 SCORING GUIDELINES

Question 4

Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

1. Any unfinished problems from Chapter 7 AP Packet
2. p. $413 \# 1,5,13,21,24,27,31,47$

AP ${ }^{\circledR}$ CALCULUS AB
 2011 SCORING GUIDELINES

Question 1

For $0 \leq t \leq 6$, a particle is moving along the x-axis. The particle's position, $x(t)$, is not explicitly given. The velocity of the particle is given by $v(t)=2 \sin \left(e^{t / 4}\right)+1$. The acceleration of the particle is given by $a(t)=\frac{1}{2} e^{t / 4} \cos \left(e^{t / 4}\right)$ and $x(0)=2$.
(a) Is the speed of the particle increasing or decreasing at time $t=5.5$? Give a reason for your answer.
(b) Find the average velocity of the particle for the time period $0 \leq t \leq 6$.
(c) Find the total distance traveled by the particle from time $t=0$ to $t=6$.
(d) For $0 \leq t \leq 6$, the particle changes direction exactly once. Find the position of the particle at that time.

AP ${ }^{\text {® }}$ CALCULUS AB 2010 SCORING GUIDELINES

Question 4

Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

1. Any unfinished problems from Chapter 7 AP Packet
2. p. $413 \# 1,5,13,21,24,27,31,47$
